
Control Flow

Overview of Control Flow Statements

• Selection statements: if, if-else, and switch.

• Iteration statements: while, do-while, basic
for, and enhanced for.

• Transfer statements: break, continue, return,
try-catch-finally , throw, and assert.

Selection Statements

• simple if statement

• if-else statement

• switch statement

The Simple if Statement

• The simple if statement has the following syntax:

if (<conditional expression>) <statement>

Examples:
if (emergency) // emergency is a boolean variable

 operate();

if (temperature > critical)

 soundAlarm();

Activity Diagram for if Statements

The Simple if Statement

 Note that <statement> can be a block, and
the block notation is necessary if more than
one statement is to be executed when the
<conditional expression> is true.
if (catIsAway()) { // Block

 getFishingRod();

 goFishing();

}

The Simple if Statement

 Note that the if block can be any valid statement.
In particular, it can be the empty statement (;) or
the empty block ({}). A common programming error
is an inadvertent use of the empty statement.
if (emergency); // Empty if block

 operate();

// Executed regardless of whether it was an

// emergency or not.

The if-else Statement

The if-else statement is used to decide between two
actions, based on a condition. It has the following syntax:

if (<conditional expression>)

 <statement1>

else

 <statement2>

The if-else Statement examples
if (emergency)

 operate();

else

 joinQueue();

if (temperature > critical)

 soundAlarm();

else

 businessAsUsual();

if (catIsAway()) {

 getFishingRod();

 goFishing();

} else

 playWithCat();

 if statements can be nested
if (temperature >= upperLimit) { //(1)

 if (danger) // (2) Simple if.

 soundAlarm();

 if (critical) // (3)

 evacuate();

 else // Goes with if at (3).

 turnHeaterOff();

} else // Goes with if at (1).

 turnHeaterOn();

Use of block notation {}
The use of the block notation, {}, can be critical to the execution of if statements.
// (A):

if (temperature > upperLimit) { // (1) Block notation.

 if (danger) soundAlarm(); // (2)

} else // Goes with if at (1).

 turnHeaterOn();

// (B):

if (temperature > upperLimit) // (1) Without block notation.

 if (danger) soundAlarm(); // (2)

else turnHeaterOn(); // Goes with if at (2).

// (C):

if (temperature > upperLimit) // (1)

 if (danger) // (2)

 soundAlarm();

 else // Goes with if at (2).

 turnHeaterOn();

Cascading if-else statements
if (temperature >= upperLimit) { // (1)

 soundAlarm();

 turnHeaterOff();

} else if (temperature < lowerLimit) { // (2)

 soundAlarm();

 turnHeaterOn();

} else if (temperature == (upperLimit+lowerLimit)/2) {// (3)

 doingFine();

} else // (4)

 noCauseToWorry();

The switch Statement
switch (<switch expression>) {

 case label1: <statement1>

 case label2: <statement2>

 ...

 case labeln: <statementn>

 default: <statement>

} // end switch

Execution of the switch statement

• The switch expression is evaluated first. If the value is a
wrapper type, an unboxing conversion is performed.

• The value of the switch expression is compared with the case
labels. Control is transferred to the <statementi> associated
with the case label that is equal to the value of the switch
expression. After execution of the associated statement,
control falls through to the next statement unless appropriate
action is taken.

• If no case label is equal to the value of the switch expression,
the statement associated with the default label is executed.

Activity Diagram for a switch Statement

Fall Through in a switch Statement
public class Advice {

 public final static int LITTLE_ADVICE = 0;

 public final static int MORE_ADVICE = 1;

 public final static int LOTS_OF_ADVICE = 2;

 public static void main(String[] args) {

 dispenseAdvice(LOTS_OF_ADVICE);

 }

 public static void dispenseAdvice(int howMuchAdvice) {

 switch(howMuchAdvice) { // (1)

 case LOTS_OF_ADVICE:

 System.out.println("See no evil."); // (2)

 case MORE_ADVICE:

 System.out.println("Speak no evil.");// (3)

 case LITTLE_ADVICE:

 System.out.println("Hear no evil."); // (4)

 break; // (5)

 default:

 System.out.println("No advice."); // (6)

 }

 }

}

Using break in a switch Statement
public static String digitToString(char digit) {

 String str = "";

 switch(digit) {

 case ’1’: str = "one"; break;

 case ’2’: str = "two"; break;

 case ’3’: str = "three"; break;

 case ’4’: str = "four"; break;

 case ’5’: str = "five"; break;

 case ’6’: str = "six"; break;

 case ’7’: str = "seven"; break;

 case ’8’: str = "eight"; break;

 case ’9’: str = "nine"; break;

 case ’0’: str = "zero"; break;

 default: System.out.println(digit + " is not a digit!");

 }

 return str;

 }

Nested switch Statement
public class Seasons {

 public static void main(String[] args) {

 int monthNumber = 11;

 switch(monthNumber) { // (1) Outer

 case 12: case 1: case 2:

 System.out.println("Snow in the winter.");

 break;

 case 3: case 4: case 5:

 System.out.println("Green grass in the spring.");

 break;

 case 6: case 7: case 8:

 System.out.println("Sunshine in the summer.");

 break;

 case 9: case 10: case 11: // (2)

 switch(monthNumber) { // Nested switch (3) Inner

Nested switch Statement
 switch(monthNumber) { // Nested switch (3) Inner

 case 10:

 System.out.println("Halloween.");

 break;

 case 11:

 System.out.println("Thanksgiving.");

 break;

 } // end nested switch

 // Always printed for case labels 9, 10, 11

 System.out.println("Yellow leaves in the fall."); // (4)

 break;

 default:

 System.out.println(monthNumber + " is not a valid month.");

 }

 }

}

Iteration Statements

Java provides four language constructs for loop
construction:

• the while statement

• the do-while statement

• the basic for statement

• the enhanced for statement

The while Statement
The syntax of the while loop is
while (<loop condition>)

 <loop body>

 The <loop condition> is evaluated before executing the <loop
body>. The while statement executes the <loop body> as long as
the <loop condition> is true.
 When the <loop condition> becomes false, the loop is
terminated and execution continues with the statement
immediately following the loop.

Activity Diagram for the while Statement

The while statement is normally used when the number of
iterations is not known.
while (noSignOfLife())

 keepLooking();

The while Statement (warning)

Since the <loop body> can be any valid statement,
inadvertently terminating each line with the empty
statement (;) can give unintended results.

Always using a block statement, { ... }, as the <loop body>
helps to avoid such problems.

while (noSignOfLife());//Empty statement as loop body!

 keepLooking(); // Statement not in the loop body.

The do-while Statement
The syntax of the do-while loop is
do

<loop body>

while (<loop condition>);

The <loop condition> is evaluated after executing the <loop body>.
The value of the <loop condition> is subjected to unboxing if it is of
the type Boolean. The do-while statement executes the <loop body>
until the <loop condition> becomes false.

When the <loop condition> becomes false, the loop is terminated
and execution continues with the statement immediately following
the loop.

Activity Diagram for the do-while Statement

while and do-while
 The <loop body> in a do-while loop is invariably a statement
block. It is instructive to compare the while and the do-while loops.
 In the examples below, the mice might never get to play if the cat
is not away, as in the loop at (1). The mice do get to play at least
once (at the peril of losing their life) in the loop at (2).

while (cat.isAway()) { // (1)

 mice.play();

}

do { // (2)

 mice.play();

} while (cat.isAway());

The for(;;) Statement

The for(;;) loop is the most general of all the
loops. It is mostly used for counter-controlled
loops, i.e., when the number of iterations is
known beforehand.
The syntax of the loop is as follows:
for (<initialization>; <loop condition>;

 <increment expression>)

 <loop body>

The semantics of the for(;;) loop

<initialization>

while (<loop condition>) {

<loop body>

<increment expression>

}

Activity Diagram for the for Statement

for statement examples
int sum = 0;

int[] array = {12, 23, 5, 7, 19};

for (int index = 0; index < array.length; index++) // (1)

 sum += array[index];

for (int i = 0, j = 1, k = 2; ... ; ...) ...; // (2)

for (int i = 0, String str = "@"; ... ; ...) ...; // (3)
//Compile time error.

int i, j, k; // Variable declaration

for (i = 0, j = 1, k = 2; ... ; ...) ...; // (4)
//Only initialization

for statement examples
Declaration statements cannot be mixed with expression statements in the
<initialization> section, as is the case at (5) in the following example. Factoring out
the variable declaration, as at (6), leaves a legal comma-separated list of expression
statements only.

// (5) Not legal and ugly:

for (int i = 0, System.out.println("not legal!"); flag; i++) { //Error!

 // loop body

}

// (6) Legal, but still ugly:

int i; // declaration factored out.

for (i = 0, System.out.println("legal!"); flag; i++) {// OK.

 // loop body

}

for statement examples

The <increment expression> can also be a comma-
separated list of expression statements. The
following code specifies a for(;;) loop that has a
comma-separated list of three variables in the
<initialization> section, and a comma-separated list
of two expressions in the <increment expression>
section:

for statement examples
// Legal usage but not recommended.

int[][] sqMatrix = { {3, 4, 6}, {5, 7, 4}, {5, 8, 9} };

for (int i = 0,

 j = sqMatrix[0].length - 1,

 asymDiagonal = 0; // initialization

 i < sqMatrix.length; // loop condition

 i++, j--) // increment expression

 asymDiagonal += sqMatrix[i][j]; // loop body

for(;;) statement
 All sections in the for(;;) header are optional. Any or all
of them can be left empty, but the two semicolons are
mandatory. In particular, leaving out the <loop condition>
signifies that the loop condition is true.
 The “crab”, (;;), is commonly used to construct an infinite
loop, where termination is presumably achieved through code
in the loop body (see next section on transfer statements):

for (;;) Java.programming(); // Infinite loop

The for(:) Statement

 The enhanced for loop is convenient when we
need to iterate over an array or a collection,
especially when some operation needs to be
performed on each element of the array or
collection.

The for(:) Statement

The element declaration specifies a local variable that can be assigned a value of the element
type of the array. This assignment might require either a boxing or an unboxing conversion.

The for(:) Statement
 The element variable is local to the loop block and
is not accessible after the loop terminates.
 Also, changing the value of the current variable
does not change any value in the array.
 The loop body, which can be a simple statement
or a statement block, is executed for each element
in the array and there is no danger of any out-of-
bounds errors.

Transfer Statements
Java provides six language constructs for transferring
control in a program:
• break
• continue
• return
• try-catch-finally
• throw
• assert

Labeled Statements

A statement may have a label.

<label> : <statement>

A label is any valid identifier and it always
immediately precedes the statement.

Label names exist in their own name space, so that
they do not conflict with names of packages, classes,
interfaces, methods, fields, and local variables.

Labeled Statements

A statement can have multiple labels:
LabelA: LabelB:

System.out.println("Mutliple labels. Use judiciously.");

A declaration statement cannot have a label:
L0: int i = 0; // Compile time error.

A labeled statement is executed as if it was unlabeled,
unless it is the break or continue statement.

The break Statement

The break statement comes in two forms: the
unlabeled and the labeled form.

break; // the unlabeled form

break <label>; // the labeled form

Unlabeled break

The unlabeled break statement terminates loops
(for(;;), for(:), while, do-while)

and switch statements, and transfers control out of
the current context (i.e., the closest enclosing
block).

The rest of the statement body is skipped, and
execution continues after the enclosing statement.

Labeled break

A labeled break statement can be used to
terminate any labeled statement that contains the
break statement. Control is then transferred to
the statement following the enclosing labeled
statement. In the case of a labeled block, the rest
of the block is skipped and execution continues
with the statement following the block:

Labeled break
out:

{ // (1) Labeled block

 // ...

 if (j == 10) break out;

 // (2) Terminate block. Control to (3).

 System.out.println(j);

 // Rest of the block not executed if j == 10.

 // ...

}

// (3) Continue here.

The continue Statement

Like the break statement, the continue statement
also comes in two forms: the unlabeled and the
labeled form.

continue; // the unlabeled form

continue <label>; // the labeled form

The continue Statement

The continue statement can only be used in a
for(;;), for(:), while, or do-while loop
to prematurely stop the current iteration of the
loop body and proceed with the next iteration, if
possible.

The continue Statement

• In the case of the while and do-while loops,
the rest of the loop body is skipped, that is,
stopping the current iteration, with execution
continuing with the <loop condition>.

• In the case of the for(;;) loop, the rest of the
loop body is skipped, with execution
continuing with the <increment expression>.

The return Statement

 The return statement is used to stop execution
of a method and transfer control back to the
calling code (also called the caller).

 The usage of the two forms of the return
statement is dictated by whether it is used in a
void or a non-void method

The return Statement

Stack-Based Execution and Exception Propagation
public class Average1 {

 public static void main(String[] args) {

 printAverage(100, 20); // (1a)

 System.out.println("Exit main()."); // (2)

 }

 public static void printAverage(int totalSum, int totalNumber) {

 int average = computeAverage(totalSum, totalNumber); // (3)

 System.out.println("Average = " + // (4)

 totalSum + " / " + totalNumber + " = " + average);

 System.out.println("Exit printAverage()."); // (5)

 }

 public static int computeAverage(int sum, int number) {

 System.out.println("Computing average."); // (6)

 return sum/number; // (7)

 }

}

Normal execution:

Exception propagation:

Exception Types

Exceptions
In dealing with throwables, it is important to recognize
situations under which particular throwables can occur,
and the source that is responsible for throwing them.
By source here we mean:
• either it is the JVM that is responsible for throwing the
throwable, or
• that the throwable is explicitly thrown programmatically
by the code in the application or any API used by the
application.

The Exception Class
 The class Exception represents exceptions that a
program would normally want to catch.

 Its subclass RuntimeException represents many common
programming errors that can manifest at runtime.

 Other subclasses of the Exception class define other
categories of exceptions, e.g., I/O-related exceptions in
the java.io package (IOException, FileNotFoundException,
EOFException, IOError).

ClassNotFoundException

The subclass ClassNotFoundException signals that the
JVM tried to load a class by its string name, but the class
could not be found. A typical example of this situation

is when the class name is misspelled while starting
program execution with the java command.

The source in this case is the JVM throwing the exception
to signal that the class cannot be found and therefore
execution cannot be started.

The RuntimeException Class
ArithmeticException

ArrayIndexOutOfBoundsException

ClassCastException

IllegalArgumentException and NumberFormatException

IllegalStateException

NullPointerException

The Error Class

AssertionError

ExceptionInInitializerErro

IOError

NoClassDefFoundError

StackOverflowError

Checked and Unchecked Exceptions

 Except for RuntimeException, Error, and their subclasses,
all exceptions are called checked exceptions.

 The compiler ensures that if a method can throw a
checked exception, directly or indirectly, the method must
explicitly deal with it.

 The method must either catch the exception and take the
appropriate action, or pass the exception on to its caller

Unchecked Exceptions

Exceptions defined by Error and RuntimeException
classes and their subclasses are known as unchecked
exceptions, meaning that a method is not obliged to
deal with these kinds of exceptions.
• irrecoverable (exemplified by the Error)

• programming errors (exemplified by the RuntimeException)

Defining New Exceptions

 New exceptions are usually defined to provide
fine-grained categorization of error situations,
instead of using existing exception classes with
descriptive detail messages to differentiate
between the situations.

Defining New Exceptions

 New exceptions can either extend the Exception class
directly or one of its checked subclasses, thereby making the
new exceptions checked, or the RuntimeException class to
create new unchecked exceptions.

 As exceptions are defined by classes, they can declare fields
and methods, thus providing more information as to their
cause and remedy when they are thrown and caught.

Exception Handling: try, catch, and finally
try { // try block

 <statements>

} catch (<exception type1> <parameter1>) { // catch block

 <statements>

}

...

 catch (<exception typen> <parametern>) { // catch block

 <statements>

} finally { // finally block

 <statements>

}

try, catch, and finally

• For each try block there can be zero or more
catch blocks, but only one finally block.

• The catch blocks and the finally block must
always appear in conjunction with a try block,
and in the right order.

• A try block must be followed by at least one catch
block or a finally block must be specified.

The try Block
 The try block establishes a context for exception handling.
Termination of a try block occurs as a result of encountering an
exception, or from successful execution of the code in the try block.

 The catch blocks are skipped for all normal exits from the try block
where no exceptions were raised, and control is transferred to the
finally block if one is specified.

 For all exits from the try block resulting from exceptions, control is
transferred to the catch blocks—if any such blocks are specified—to
find a matching catch block.

 If no catch block matches the thrown exception, control is
transferred to the finally block if one is specified.

The catch Block
 A catch block can only catch the thrown exception if the
exception is assignable to the parameter in the catch block.
 The code of the first such catch block is executed and all
other catch blocks are ignored.
 On exit from a catch block, normal execution continues
unless there is any pending exception that has been thrown
and not handled.
 If this is the case, the method is aborted and the exception is
propagated up the runtime stack as explained earlier.

The catch Block

 After a catch block has been executed, control
is always transferred to the finally block if one is
specified.

 This is always true as long as there is a finally
block, regardless of whether the catch block
itself throws an exception.

Exception handling example
public class Average2 {

 public static void main(String[] args) {

 printAverage(100, 20); // (1)

 System.out.println("Exit main()."); // (2)

 }

 public static void printAverage(int totalSum, int totalNumber) {

 try { // (3)

 int average = computeAverage(totalSum, totalNumber); // (4)

 System.out.println("Average = " + // (5)

 totalSum + " / " + totalNumber + " = " + average);

 } catch (ArithmeticException ae) { // (6)

 ae.printStackTrace(); // (7)

 System.out.println("Exception handled in printAverage()."); // (8)

 }

 System.out.println("Exit printAverage()."); // (9)

 }

 public static int computeAverage(int sum, int number) {

 System.out.println("Computing average."); // (10)

 return sum/number; // (11)

 }

}

Exception handling

Exception handling

public class Average3 {

 public static void main(String[] args) {

 try { // (1)

 printAverage(100, 0); // (2)

 } catch (ArithmeticException ae) { // (3)

 ae.printStackTrace(); // (4)

 System.out.println("Exception handled in main()."); // (5)

 }

 System.out.println("Exit main()."); // (6)

 }

public static void printAverage(int totalSum, int totalNumber) {

 try { // (7)

 int average = computeAverage(totalSum, totalNumber); // (8)

 System.out.println("Average = " + // (9)

 totalSum + " / " + totalNumber + " = " + average);

 } catch (IllegalArgumentException iae) { // (10)

 iae.printStackTrace(); // (11)

 System.out.println("Exception handled in printAverage()."); // (12)

 }

 System.out.println("Exit printAverage()."); // (13)

 }

 public static int computeAverage(int sum, int number) {

 System.out.println("Computing average."); // (14)

 return sum/number; // (15)

 }

}

Exception handling

The finally Block
If the finally block neither throws an exception nor executes a control
transfer statement like a return or a labeled break, the execution of
the try block or any catch block determines how execution proceeds
after the finally block
• If there is no exception thrown during execution of the try block or

the exception has been handled in a catch block, normal execution
continues after the finally block.

• If there is any pending exception that has been thrown and not
handled (either due to the fact that no catch block was found or the
catch block threw an exception), the method is aborted and the
exception is propagated after the executionof the finally block.

The try-catch-finally Construct
public class Average4 {

 public static void main(String[] args) {

 printAverage(100, 20); // (1)

 System.out.println("Exit main()."); // (2)

 }

 public static void printAverage(int totalSum, int totalNumber) {

 try { // (3)

 int average = computeAverage(totalSum, totalNumber); // (4)

 System.out.println("Average = " + // (5)

 totalSum + " / " + totalNumber + " = " + average);

 } catch (ArithmeticException ae) { // (6)

 ae.printStackTrace(); // (7)

 System.out.println("Exception handled in printAverage()."); // (8)

 } finally { // (9)

 System.out.println("Finally done.");

 }

 System.out.println("Exit printAverage()."); // (10)

 }

 public static int computeAverage(int sum, int number) {

 System.out.println("Computing average."); // (11)

 return sum/number; // (12)

 }

}

The throw Statement

 Application can programmatically throw an
exception using the throw statement.

 The general format of the throw statement is
as follows:
throw <object reference expression>;

The throw Statement

The compiler ensures that the <object reference expression>
is of the type Throwable class or one of its subclasses.

At runtime a NullPointerException is thrown by the JVM if
the <object reference expression> is null.

This ensures that a Throwable will always be propagated.

A detail message is often passed to the constructor when the
exception object is created.
throw new ArithmeticException("Integer division by 0");

The throw Statement
• When an exception is thrown, normal execution is suspended. The

runtime system proceeds to find a catch block that can handle the
exception.

• The search starts in the context of the current try block, propagating to
any enclosing try blocks and through the runtime stack to find a handler
for the exception.

• Any associated finally block of a try block encountered along the search
path is executed. If no handler is found, then the exception is dealt with by
the default exception handler at the top level.

• If a handler is found, normal execution resumes after the code in its catch
block has been executed, barring any rethrowing of an exception.

The throws Clause
• A throws clause can be specified in the method header.
... someMethod(...) throws <ExceptionType1>,...,

 <ExceptionTypen> { ... }

• Each <ExceptionTypei> declares an exception, normally only
checked exceptions are declared. The compiler enforces that the
checked exceptions thrown by a method are limited to those
specified in its throws clause.

• Of course, the method can throw exceptions that are subclasses of
the checked exceptions in the throws clause.

• The throws clause can specify unchecked exceptions, but this is
seldom done and the compiler does not verify them.

The throws Clause
 If a checked exception is thrown in a method, it must be
handled in one of three ways:
• By using a try block and catching the exception in a handler

and dealing with it
• By using a try block and catching the exception in a

handler, but throwing another exception that is either
unchecked or declared in its throws clause

• By explicitly allowing propagation of the exception to its
caller by declaring it in the throws clause of its method
header

Assertions
• Each assertion contains a boolean expression that is

expected to be true when the assertion is executed.
• If this assumption is false, the JVM throws a special error

represented by the AssertionError class.
• The assertion facility uses the exception handling

mechanism to propagate the error.
• Since the assertion error signals failure in program

behavior, it should not be caught programmatically, but
allowed to propagate to the top level.

Assertions

The assertion facility is an invaluable aid in implementing
correct programs (i.e., programs that adhere to their
specifications).

It should not be confused with the exception handling
mechanism that aids in developing robust programs (i.e.,
programs that handle unexpected situations gracefully).

Used judiciously, the two mechanisms facilitate programs
that are reliable.

The assert Statement and the
AssertionError Class

The following two forms of the assert statement
can be used to specify assertions:
assert <boolean expression> ; // the simple form

assert <boolean expression> : <message expression> ;

// the augmented form

The assert Statement and the
AssertionError Class

The two forms are essentially equivalent to the following code, respectively:

if (<assertions enabled> && !<boolean expression>)

// the simple form

 throw new AssertionError();

if (<assertions enabled> && !<boolean expression>)

// the augmented form

 throw new AssertionError(<message expression>);

Execution of the Simple assert
Statement (with Assertions Enabled)

Compiling Assertions

The assertion facility was introduced in Java 1.4. Prior to
Java 1.4, assert was an identifier and not a keyword.

Starting with Java 1.4, it could only be used as a keyword
in the source code. Also starting with Java 1.5, the javac
compiler will compile assertions by default.

This means that incorrect use of the keyword assert will
be flagged as a compile time error, e.g., if assert is used
as an identifier.

Runtime Enabling and Disabling of Assertions

• Two options are provided by the java command to enable
and disable assertions with various granularities.

• The option -enableassertions, or its short form -ea,
enables assertions, and the option -disableassertions, or
its short form -da, disables assertions at various
granularities.

• The granularities that can be specified are shown in Table

Runtime Enabling and Disabling of Assertions

Assertion Execution for All Non-System Classes
• The -ea option means that all non-system classes loaded

during the execution of the program have their assertions
enabled. A system class is a class that is in the Java platform
libraries. For example, classes in the java.* packages are
system classes.

• A system class is loaded directly by the JVM.
• Note that class files not compiled with an assertion-aware

compiler are not affected, whether assertions are enabled
or disabled.

• Also, once a class has been loaded and initialized at
runtime, its assertion status cannot be changed.

Assertion Execution at the Package Level
• Assume that we have a program called Trickster in the unnamed

package, that uses the wizard package
• The following command line will only enable assertions for all classes

in the package wizard.pandorasBox and its subpackage
wizard.pandorasBox.artifacts.

• The assertions in the class Trickster are not enabled.
 >java -ea:wizard.pandorasBox... Trickster
• Without the ... notation, the package name will be interpreted as a

class name.
• Non-existent package names specified in the command line are

silently accepted, but simply have no consequences during execution.

Assertion Execution at the Class Level

The following command line will only enable
assertions in the Trickster class.
>java -ea:Trickster Trickster

The following command line will only enable
assertions in the specified class
wizard.pandorasBox.artifacts.Ailment,
and no other class.
>java -ea:wizard.pandorasBox.artifacts.Ailment Trickster

Assertion Execution for All System Classes

In the following command line, the first option -esa will
enable assertions for all system classes. The second option
-ea:wizard... will enable assertions in the package wizard
and its subpackages wizard.pandorasBox,
wizard.pandorasBox.artifacts and wizard.spells, but the
third option -da:wizard.pandorasBox.artifacts... will disable
them in the package wizard.pandorasBox.artifacts.
>java -esa -ea:wizard...

 -da:wizard.pandorasBox.artifacts... Trickster

Enabling and Disabling Assertions in All
System Classes at Runtime

Using Assertions

• The assertion facility is a defensive mechanism,
meaning that it should only be used to test the code,
and should not be employed after the code is
delivered.

• The program should exhibit the same behavior
whether assertions are enabled or disabled.

• The program should not rely on any computations
done within an assertion statement.

Using Assertions

With assertions enabled, the following statement
would be executed, but if assertions were
disabled, it could have dire consequences.

assert reactor.controlCoreTemperature();

Assertions: Internal Invariants
The following code at (1) makes the assumption
that the variable status must be negative for the
last else clause to be executed.
int status = ref1.compareTo(ref2);

if (status == 0) {

 ...

} else if (status > 0) {

 ...

} else {

// (1) status must be negative.

 ...

}

This assumption is an internal invariant and can be
verified using an assertion, as
shown at (2) below.
int status = ref1.compareTo(ref2);

if (status == 0) {

 ...

} else if (status > 0) {

 ...

} else {

 assert status < 0 : status; // (2)

 ...

}

Control Flow Invariants

The following idiom can be employed to
explicitly test that certain locations in the code
will never be reached.

assert false : "This line should never be reached.";

Preconditions and Postconditions
The assertion facility can be used to practice a
limited form of programming-by-contract. For
example, the assertion facility can be used to check
that methods comply with their contract.
Preconditions define assumptions for the proper
execution of a method when it is invoked.
Postconditions define assumptions about the
successful completion of a method.

